Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 6, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153531

ABSTRACT

Candida onychomycosis is a common fungal infection affecting the nails, primarily caused by Candida (C.) species. Regarding the increasing trend of Candida onychomycosis and the antifungal resistant phenomenon in recent years, this study aims to evaluate the epidemiological characteristics of Candida onychomycosis, the distribution of emerging species, and the antifungal susceptibility profiles of isolates. Onychomycosis caused by yeast species was confirmed through direct examination and culture of nail scraping among all individuals suspected to have onychomycosis and referred to a medical mycology laboratory between June 2019 and March 2022. Species of yeast isolates were identified using the multiplex PCR and PCR-RFLP methods. The antifungal susceptibility of isolates to common antifungal agents and imidazole drugs was evaluated according to the M-27-A3 CLSI protocol. Among 101 yeast strains isolated from onychomycosis, Candida parapsilosis complex (50.49%) was the most common species, followed by C. albicans (20.79%) and C. tropicalis (10.89%). Rare species of yeasts such as C. guilliermondii and Saccharomyces cerevisiae were also identified by molecular methods. Results obtained from antifungal susceptibility testing showed significant differences in MIC values of isoconazole, fenticonazole, and sertaconazole among different species. Overall, a fluconazole-resistant rate of 3% was found among Candida species. Moreover, there was a statistically significant difference in MICs of fenticonazole and clotrimazole between the two most prevalent causative species, C. parapsilosis complex and C. albicans. Correct identification of the causative agents of onychomycosis and performing susceptibility testing could be helpful in choosing the most appropriate antifungal therapy.


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Onychomycosis , Humans , Antifungal Agents/pharmacology , Candida , Candida albicans , Cross-Sectional Studies , Onychomycosis/microbiology , Saccharomyces cerevisiae
2.
Biomed Res Int ; 2021: 6548554, 2021.
Article in English | MEDLINE | ID: mdl-34840978

ABSTRACT

Tissue engineering is biomedical engineering that uses suitable biochemical and physicochemical factors to assemble functional constructs that restore or improve damaged tissues. Recently, cell therapies as a subset of tissue engineering have been very promising in the treatment of ocular diseases. One of the most important biophysical factors to make this happen is noninvasive electrical stimulation (ES) to target ocular cells that may preserve vision in multiple retinal and optic nerve diseases. The science of cellular and biophysical interactions is very exciting in regenerative medicine now. Although the exact effect of ES on cells is unknown, multiple mechanisms are considered to underlie the effects of ES, including increased production of neurotrophic agents, improved cell migration, and inhibition of proinflammatory cytokines and cellular apoptosis. In this review, we highlighted the effects of ES on ocular cells, especially on the corneal, retinal, and optic nerve cells. Initially, we summarized the current literature on the in vitro and in vivo effects of ES on ocular cells and then we provided the clinical studies describing the effect of ES on ocular complications. For each area, we used some of the most impactful articles to show the important concepts and results that advanced the state of these interactions. We conclude with reflections on emerging new areas and perspectives for future development in this field.


Subject(s)
Electric Stimulation Therapy/methods , Eye Diseases/therapy , Eye/cytology , Tissue Engineering/methods , Animals , Cell- and Tissue-Based Therapy/methods , Eye Diseases/physiopathology , Humans , In Vitro Techniques , Regenerative Medicine/methods , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...